第(1/3)页 黄明哲的第一个方向,就是整合分析拓扑和代数拓扑。 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。 国内早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”, 但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。 通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。 拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。 而拓扑学经常被描述成“橡皮泥的几何”,就是说它研究物体在连续变形下不变的性质。 比如,所有多边形和圆周在拓扑意义下是一样的,因为多边形可以通过连续变形变成圆周。 一个茶杯可以连续地变为一个实心环,在拓扑学家眼里,它们是同一个对象;而圆周和线段在拓扑意义下就不一样,因为把圆周变成线段总会断裂(不连续)。 拓扑学发展到今天,在理论上已经十分明显分成了两个分支。 一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。 另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。 这两个分支到现在又有统一的趋势,而这也是黄明哲的研究发向。 而拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。 不过要统一分析拓扑和代数拓扑,显然也不是一件容易的事情,一边浏览大量的论文,一边又在学校图书馆找拓扑学的相关书籍。 他脑海之中的拓扑学知识体正在迅速的增长着,不过数学从来都不是一个独立的系统,而是一个个数的组合,一条条公式的集合。 不断的激发灵感火花,将拓扑学知识体和代数几何知识体、分析知识体等进行灵感火花碰撞,无数的新知识在他大脑之中爆发出来。 拓扑学这座大厦,正在被黄明哲构建得更加庞大、更加坚固、更加有条不紊。 …… 课堂上,黄明哲一心两用,一边听课一边思考着问题,不时在草稿纸上面写写画画。 第(1/3)页