第(1/3)页 证明题如下…… “孪生素数是指那些相差为2的素数对,比如3和5、5和7、11和13、17和19、599和601……除了第一对孪生素数(即3和5)之外,每个孪生素数对中的第一个素数总是比6的倍数小1,所以第二个孪生素数总是比6的倍数大1,素数对(p,p+2)称为孪生素数。 试证明:在自然数集中,这样的孪生素数对有无穷多个。 即…… 存在无穷多个素数p,并且对每个p而言,有p+2这个数也是素数。” 这…… 就是无名笔记本第一页的内容。 真的是一个证明题。 而第二第三第四,一直往后数百页,都写满了证明过程和各种批注。 例如…… “一:阴性合数定理和阴性素数定理:大于3的素数只分布在6n-1和6n+1两数列中,6n-1数列中的合数叫阴性合数……” “二:阳性合数定理和阳性素数定理,6n+1数列中的合数叫阳性合数……” “三:与孪生素数相对应的完全不等数(x)=/=6nm+-(m+-n),它既不等于阴性上下两式,也不等于阳性上下两式……” “四:阴阳四种等数在自然数列……” “五……” “六……” “……” 以上都只是概要,占据了几十页。 而笔记本后边…… 则是证明方法,以及孪生素数分布表。 再然后…… 就截然而止,证明中断了。 显然…… 笔记本的主人并未把该证明给证明出来,但这已经足够复杂了。 换成一般人,估计看上十几页就晕了,可江南却津津有味的一直看到最后。 话说…… 上边只是第一种证明方法,非常复杂,感觉人力不可穷尽,所以中断也正常。 实际上。 这神秘的笔记本非常厚。 上边第一种证明方法虽然多,但也仅仅占据笔记本一半罢了。 江南再往后翻了几页空白,竟又发现了第二种证明方法。 那就是对所有自然数k,存在无穷多个素数对(p,p+2k)。k等于1时就是孪生素数猜想,而k等于其他自然数时就称为弱孪生素数猜想(即孪生素数猜想的弱化版)。 针对该弱化版。 后边也有很长一段论证过程。 如2013年,唐一漳针对该弱化形式,在不依赖未经证明推论的前提下,发现存在无穷多个之差小于7000万的素数对。 也就是说这个常数k是7000万。 但这7000万不是终结。 而仅仅是开始。 再往后…… 这个常数k从7000万。 一直缩减为6000万,4200万,1300万,500万,40万……246。 没错,就是246。 这个常数k已经被缩小到非常小的数字,过程虽然复杂,但结果非常可观。 第(1/3)页