第59章IMO考试正式开始-《从学霸开始打造黑科技帝国》


    第(3/3)页

    这道题的难度大概是在中等。

    不过楚皓觉得它的真实难度应该在中等偏上。

    不过对于他而言so    easy!

    然后便是第三题。

    这不出意外应该是本次imo的重头戏了。

    但看了一会题楚皓眉头也随之拧在了一起,“这题也不是很难啊?”

    如题:

    3,设n是一个固定的正偶数,考虑一块nx    n的正方板,它被分成n:个单位正方格。

    板上两个不同的正方格如果有一条公共边,就称它们为相邻的。

    将板上n个单位正方格作上标记,使得板上的任意正方格(作上标记的或者没有作.上标记的)都与至少一个作上标记的正方格相邻。

    确定n的最小值。

    这题确实是有难度。

    不然也不会放在一试的第三题了。

    但这题的难度又绝对到不了最难,那么这样看来估计今年imo的压轴题应该是在二试了。

    不过也可以理解,如果一试就把最难的一题给放出来了岂不是没了意思。

    并且这个第三题还是很有意思的,楚皓也在草稿纸上涂了一个图形帮助解题。

    解:设n=2k,首先将正方板黑白相间地涂成像国际象棋盘那样。

    设f(n)为所求的n的最小值,f?(n)为必须作上标记的白格子的最小数目,使得任一黑格子都有一个作上标记的白格子与之相邻。

    同样地,定义fb(n)为必须作上标记的集格子的最小数目,使得任一白格子都有一个作上标记的黑格子与之相邻。

    由于n为偶数,“棋盘“是对称的,故有:

    f?(n)=fb(n),

    f(n)=fw(n)+    fb(n)……

    这一题的解答过程稍微有些长,并且还需要画图作为辅助,所以楚皓做起来也比较费时间。

    因此,f(n)=k(k+1)。

    停笔检查,完毕后楚皓看了一眼时间,当地时间十一点零七,又是两个小时以内完成答题!

    交卷走出考场,楚皓没有一丝留念,只给一众外国选手留下了一个传说般的背影。


    第(3/3)页